
Explicitly Comprehensible Functional Reactive Programming
Steven Krouse

steveykrouse@gmail.com

ABSTRACT
Functional Reactive programs written in The Elm Architecture are
difficult to comprehend without reading every line of code. A more
modular architecture would allow programmers to understand a
small piece without reading the entire application. This paper shows
how higher-order and cyclic streams, as demonstrated via the Reflex
library, can improve comprehensibility.

CCS CONCEPTS
• Software and its engineering→ Functional languages;Data
types and structures; Patterns; Frameworks;

KEYWORDS
functional reactive programming, elm, reflex

ACM Reference Format:
Steven Krouse. 2018. Explicitly Comprehensible Functional Reactive Pro-
gramming. In Proceedings of SPLASH Boston (REBLS’18). ACM, New York,
NY, USA, 5 pages.

1 INTRODUCTION
In imperative languages with global mutable state, variables can be
modified anywhere and in terms of any other global variables. In
functional programming without mutable state, all terms explicitly
list what they depend upon. This explicitness makes it easy to
determine which parts of the code are dependent and independent
of each other.

However, it is still possible to obfuscate the relationships between
pieces of state in functional programming. One can simulate global
mutable state by passing around an arbitrarily large compound state
value as an extra parameter to each function. This is considered
an anti-pattern because "ease of reasoning is lost (we still know
that each function is dependent only upon its arguments, but one
of them has become so large and contains irrelevant values that
the benefit of this knowledge as an aid to understanding is almost
nothing)." [7]

Yet in client-side Functional Reactive Programming (FRP), a vari-
ation on this anti-pattern has become the dominant architecture.
Originally conceived for the Elm programming language [2], The
Elm Architecture has since inspired ReactJS’s Redux, VueJS’s Vuex,
CycleJS’s Onionify, among many other front-end state management
libraries. This paper contrasts The Elm Architecture with a state
management pattern in the Reflex library that maintains explicit
relationships.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
REBLS’18, November 2018, Boston, Massachusetts USA
© 2018 Copyright held by the owner/author(s).

2 THE ELM ARCHITECTURE
Elm is a pure functional language in the spirit of ML that compiles to
JavaScript. Its streams are first-order and non-cyclic, which means
that streams cannot contain other streams, and streams cannot
reference streams that reference themselves, respectively. Let’s
explore the architecture with a simple counter application.

(a) The Elm Architecture (b) Simple Counter App

Listing 1: Elm Counter
1type alias Model =

2{ count : Int }

3

4initialModel : Model

5initialModel =

6{ count = 0 }

7

8type Msg

9= Increment

10| Decrement

11

12update : Msg -> Model -> Model

13update msg model =

14case msg of

15Increment ->

16{ model | count = model.count + 1 }

17Decrement ->

18{ model | count = model.count - 1 }

19

20view : Model -> Html Msg

21view model =

22div []

23[button

24[onClick Increment]

25[text "+1"]

26, div

27[]

28[text <| toString model.count]

29, button

REBLS’18, November 2018, Boston, Massachusetts USA S. Krouse

30[onClick Decrement]

31[text "-1"]

32]

33

34main : Program Never Model Msg

35main =

36Html.beginnerProgram

37{ model = initialModel

38, view = view

39, update = update

40}

The core of the architecture is its a compound state value, model,
Listing 1, lines 1-6. It represents the entirety of an applications
state at any given time. Just like in imperative programming, the
Elm Architecture is explicit only about the initial values of the
model, here defined in Listing 1, line 6. The reducer, Listing 1,
lines 12-18, steps the model forward in response to messages.
Messages are generated from events in the view Listing 1, lines
20-32, such as the Increment and Decrementmessages, both from
onClick events.

3 REFLEX
The Reflex library was built for Haskell web development via ghcjs,
a Haskell to JavaScript compiler. Like in traditional FRP[4], Reflex
has two main concepts: Events and Behaviors. Events are discrete
occurrences in time, while Behaviors are continuously defined val-
ues for all points in time. Reflex also has Dynamic values, which
have the properties of both: they are defined at all points in time
and emit events at the discrete points in time when they change.
In the following examples we use Events and Dynamics.

Listing 2: Reflex Counter
1button :: Text -> m (Event ())

2el :: Text -> m a -> m a

3display :: Show a => Dynamic a -> m ()

4(<$) :: a -> Event b -> Event a

5leftmost :: [Event a] -> Event a

6foldDyn :: (a -> b -> b) -> b -> Event a -> m (

Dynamic b)

7

8bodyElement :: MonadWidget t m => m ()

9bodyElement = do

10rec evIncr <- button "+1"

11el "div" $ display count

12evDecr <- button "-1"

13count <- foldDyn (+) 0 $ leftmost

14[1 <$ evIncr

15, -1 <$ evDecr

16]

17return ()

18

19main :: IO ()

20main = mainWidget bodyElement

Reflex uses monadic do syntax to lay out the order of HTML
elements [3]. In Listing 2, line 10 and 12, we create buttons with
text "+1" and "-1", and bind their click event streams of type
Event () to the names evIncr and evIncr, respectively. Notice
that in Listing 2, line 11 count is used before it is defined. In
Reflex, statements are arranged vertically in the order in which
they appear in the HTML DOM tree. The recursive-do syntax [5]
allow us to set up an event propagation network at the same time
as we lay our our HTML elements. To calculate the count from the
button click events, we use:

• <$ (which is equivalent to Fran’s -=> operator [4]) to to map
each click event to either 1 or -1

• leftmost to merge (left-biased for simultaneous events) the
two event streams into a single event stream, and

• foldDyn (+) to sum them up.
However this architecture does not properly generalize. For ex-

ample, say we wanted to be able to set the value of the counter to
a specific value, say another Dynamic, dynNum1, in response to a
third button press. Instead of summing of Event Int, we can step
forward the previous value of state with Event (Int -> Int). In
Haskell, the dollar-sign operator, ($):: (a -> b)-> a -> b, rep-
resents functional application, so here it applies each event function
to the previous value of count.

count <- foldDyn ($) 0 $ leftmost

[(+ 1) <$ evIncr

, (+ (-1)) <$ evDecr

, (_ -> dynNum1) <$ evSet

]

This pattern is similar to the Elm Architecture in that it is a
reduction over events. However this is a local reduction solely for
this piece of state. If there were other independent pieces of state
in this application, they would have separate reductions.

Even in this small example we can see how count is defined
more explicitly than in Elm. If we wish to understand how count
behaves, we have a singular place to look for what it depends upon,
evIncr and evDecr, and precisely how, mapping them to (+ 1)
and (+ (-1)), respectively, and then merging and applying.

The price we pay for this explicitness is that events are abstracted
from the single messages in Elm into streams of values. In Elm we
write a global state reducer function that pattern matches on these
event messages. In Reflex we use stream combinators to define the
model and view as streams of each other.

3.1 Cyclic FRP
Reflex’s higher-order and cyclic streams are necessary to maintain
explicitness in cyclical applications. "The DOM tree in an FRP ap-
plication can change in response to changes in FRP behaviors and
events. However, such new elements in the DOM tree may also
produce new primitive event streams that represent, for example,
button clicks on the event, which the FRP program needs to be able
to react to. In other words, there is a cycle of dependencies..." [8].

Imagine a buttons that you can click to create more buttons, and
when you click those buttons they also create buttons, and when
you click those buttons... In Reflex, you’d accomplish this by first
describing a list of buttons of Dynamic length. This would emit a

Explicitly Comprehensible Functional Reactive Programming REBLS’18, November 2018, Boston, Massachusetts USA

Dynamic list of Events, a higher-order stream. If you flattened the
the higher-order stream, counted all click Event occurrences, and
added 1 for the original button, you’d get the desired length of the
Dynamic list of buttons. Reflex would let you cyclically feed this
Dynamic value back as the length of the list of buttons.

In Elm the cyclic nature of this application wouldn’t be apparent
in the code. You’d have a have a list of buttons of length count, a
value defined in the model. The value of count would increase in
response to Increment messages, so you’d make sure that all your
buttons emit Increment messages in response to click events. The
issuewith the Elm approach is that it’s too general: any view element
could also issue Incrementmessages, and any othermessages could
affect the count variable.

4 TODOMVC COMPARISON
Let’s compare Elm ToDoMVC 1 with Reflex ToDoMVC 2. Say we
wish to understand the behavior of the list of todo items in both
implementations.

4.1 Elm TodoMVC
In Elm, any message can modify any state. For example, in update,
the Addmessage triggers an update of three different pieces of state:

Add ->

{ model

| uid = model.uid + 1

, field = ""

, entries = if String.isEmpty model.field then

model.entries else model.entries ++ [

newEntry model.field model.uid]

}

Each piece of state can be modified in terms of any other piece of
state. There’s no explicit isolation between independent states, so
it’s difficult to reason about the behavior of the application. This
hinders modularity: components become difficult to disentangle
because the borders between them are blurred into a pooled state.

Technically the Elm Architecture does allow for modular com-
posibility, but it is discouraged. "Don’t reach for this initially as a
way to organise your application as ’components’. If you do this

1https://github.com/evancz/elm-todomvc/blob/master/Todo.elm
2https://github.com/reflex-frp/reflex-todomvc/blob/develop/src/Reflex/TodoMVC.hs

too soon you will end up with plently of boilerplate." 3. Thus we
can expect Elm applications to grow entangled and stay that way.

Like in a language with global mutable state, there is no single
place to look to understand how the todo items list, here called
entries, behaves. We must Ctl-F for all occurrences of entries
=, as seen in Fig. 2, and then piece together in our head how
the sum total of these effects come together to form an integrated
behavior. In this way, the Elm Architecture’s reducer simulates the
"primitive word-at-a-time style of programming inherited from the
von Neumann computer ... instead of encouraging us to think in
terms of the larger conceptual units of the task at hand."[1]

Figure 2: Elm TodoMVC entries modifications highlighted
in reducer

Additionally, any view element can emit any number of mes-
sages. We know from our Ctl-F above that the Add, EditingEntry
, UpdateEntry, Delete, DeleteComplete, Check, and CheckAll
events can affect entries, so now we Ctl-F for each of those events
to see which HTML elements emit those messages in response to
which events as seen in Fig. 3.

If we’re looking to understand a single piece of state in Elm, we’re
not much better off than with an entirely imperative framework:
we still have to read more-or-less the whole application even if we
wish only to comprehend only a small piece. Modularity is lost as

3https://www.elm-tutorial.org/en-v01/02-elm-arch/08-composing-3.html

REBLS’18, November 2018, Boston, Massachusetts USA S. Krouse

Figure 3: ElmTodoMVC relevant actions highlighted in view

surely as if we passed around an arbitrarily-large compound state
value to all of our functions, which is in fact what we’ve done.

4.2 Reflex TodoMVC
For contrast, if we wish to understand the same piece of state in
Reflex’s TodoMVC, there is a single explicit place to look, Listing
3, lines 16-19. This definition uses the more generalized pattern
discussed for the counter application above. There we had Event
(Int -> Int) and here we have Event (Map Int Task -> Map

Int Task). Here tasks is defined as a merging of three event
streams:

(1) fmap insertNew_ newTask is where new tasks are added
to the list.

(2) listModifyTasks handles the vast majority of task muta-
tions, including deletions, completions (and their reversal),
and task text editing. This definition depends on tasks and
activeFilter.

(3) fmap (const $ Map.filter $ not . taskCompleted)
clearCompleted filters out the currently-completed tasks
all at once when the bottom-right "Clear Completed" button
is clicked.

Listing 3: Reflex TodoMVC
1initialTasks :: Map Int Task

2initialTasks = Map.empty

3

4insertNew_ :: Task -> Map Int Task -> Map Int Task

5

6todoMVC :: (DomBuilder t m

7, DomBuilderSpace m ~ GhcjsDomSpace

8, MonadFix m

9, MonadHold t m

10)

11=> m ()

12todoMVC = do

13el "div" $ do

14elAttr "section" ("class" =: "todoapp") $ do

15mainHeader

16rec tasks <- foldDyn ($) initialTasks $

mergeWith (.)

17[fmap insertNew_ newTask

18, listModifyTasks

19, fmap (const $ Map.filter $ not .

taskCompleted) clearCompleted

20]

21newTask <- taskEntry

22listModifyTasks <- taskList activeFilter

tasks

23(activeFilter, clearCompleted) <- controls

tasks

24return ()

25infoFooter

Explicitness allows us to see the shape of this application, how
its pieces come together to make an integrated whole. We see where
code is independent, such as taskEntry, and dependent, such as
tasks on activeFilter. If we only cared about one specific piece
of an application, we could rely on these explicit relationships to
determine which parts of the code are relevant (dependent) and
which we can safely ignore (independent).

5 IS THE CUREWORSE THAN THE DISEASE?
This paper argues for higher-order and cyclic streams for the pur-
poses of comprehensibility. Yet the dense Reflex code isn’t easy
to understand. The creator of Elm takes this stance, arguing that
explicit dependencies lead to a "crazy" graph of dependencies4.

The Elm Architecture has many benefits. For one, it simulates
global mutable state, which is very familiar to most programmers.
The one-message-at-a-time style does simplify the code writing
process. It also reduces coupling between the view and the model,
making it easier to make changes. Finally, Elm’s model variable
is easily serialized, which allows for time-travel debugging, hot
reloading, and easy-to-implement undo features.

While it is easier to write in the Elm Architecture, it is harder
to navigate an large, unfamiliar codebase. Here Reflex shines by
4https://youtu.be/DfLvDFxcAIA?t=27m32s

Explicitly Comprehensible Functional Reactive Programming REBLS’18, November 2018, Boston, Massachusetts USA

showing how the pieces of state fit together. Reflex does this, in part,
by exposing the cyclic nature of the cyclic interfaces, instead of
obfuscating them behind a global variable modifiable from anyplace.

While Reflex enables understanding states via a single place in
the code, Elm enables understanding messages via a single place
in the code. If one wanted to understand the impact of a Reflex
stream on downstream states, one would have to play the reverse
of the Ctl-F game that we played in Elm. While this duality might
seem equivalent, Reflex’s style is more comprehensible because
understanding the behaviors of states is much more important than
understanding the effects of messages.

To be fair, let’s not understate the difficulty of writing Reflex
code. It is hell on earth, grappling with its unwieldy types, double
fmaping over streams, and waiting for ghcjs to compile. Reflex is
a reasonably sound computational model that is in much need of a
usability upgrade.

6 RELATEDWORK
Other Haskell FRP implementations, such as Threepenny.gui5 and
Sodium6 have imperative solutions to the cyclic dependency prob-
lem. Slim is a Haskell DSL for FRP cyclic streams "using (safe)
recursive definitions" [9].

FlapJax was the first JavaScript-based FRP implementation [6].
xstate is modern JavaScript library featuring higher-order streams.
It allows for cyclic definitions, defined imperatively 7.

7 CONCLUSION
As the popularity of FRP frameworks continues, it’s increasingly
important to have a data model architecture that prioritizes the
comprehensibility and modularity of large programs. This paper
does not present a direct solution to this problem, but instead at-
tempts to sound the alarm that what we’re currently satisfied with,
The Elm Architecture, is not good enough. The Reflex library, with
its higher-order and cyclic streams, points in the right direction,
but we are still far from a complete solution to the problem of
comprehensible user interface construction.

8 ACKNOWLEDGEMENTS
Jonathan Edwards provided invaluable encouragement, suggestions,
and mentorship.

5https://wiki.haskell.org/Threepenny-gui
6https://github.com/SodiumFRP
7https://github.com/staltz/xstream#-imitatetarget

REFERENCES
[1] John Backus. 1978. Can Programming Be Liberated from the Von Neumann Style?:

A Functional Style and Its Algebra of Programs. Commun. ACM 21, 8 (Aug. 1978),
613–641. https://doi.org/10.1145/359576.359579

[2] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional reactive
programming for GUIs. In ACM SIGPLAN Notices, Vol. 48. ACM, 411–422.

[3] Conal Elliott. 2009. Push-pull functional reactive programming. In Haskell Sympo-
sium. http://conal.net/papers/push-pull-frp

[4] Conal Elliott and Paul Hudak. 1997. Functional reactive animation. In ACM
SIGPLAN Notices, Vol. 32. ACM, 263–273.

[5] Levent Erkök and John Launchbury. 2000. Recursive monadic bindings. In ACM
Sigplan Notices, Vol. 35. ACM, 174–185.

[6] Leo A Meyerovich, Arjun Guha, Jacob Baskin, Gregory H Cooper, Michael Green-
berg, Aleks Bromfield, and Shriram Krishnamurthi. 2009. Flapjax: a programming
language for Ajax applications. In ACM SIGPLAN Notices, Vol. 44. ACM, 1–20.

[7] Ben Moseley and Peter Marks. 2006. Out of the tar pit. Software Practice Advance-
ment (SPA) 2006 (2006).

[8] Bob Reynders, Dominique Devriese, and Frank Piessens. 2017. Experience Re-
port: Functional Reactive Programming and the DOM. In Companion to the first
International Conference on the Art, Science and Engineering of Programming. ACM,
23.

[9] JK van der Plas. 2016. Slim: functional reactive user interface programming. Master’s
thesis.

https://doi.org/10.1145/359576.359579
http://conal.net/papers/push-pull-frp

	Abstract
	1 Introduction
	2 The Elm Architecture
	3 Reflex
	3.1 Cyclic FRP

	4 TodoMVC Comparison
	4.1 Elm TodoMVC
	4.2 Reflex TodoMVC

	5 Is the cure worse than the disease?
	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

